> Metabolically induced NASH in obese LDLr-/-.Leiden mice share common molecular responses with NASH patients

The innovation for life

Introduction

Mouse models of NAFLD are the cornerstone for mechanistic studies of disease pathogenesis and frequently used for the screening of pharmacological interventions. However, not all models represent human pathology and etiology to a similar extent. One way to define predictability of these mouse models is to compare their molecular response involved in disease development with those present in NASH.

Results:

Overlap of pre-selected individual genes (as documented by Teufel et al.) in human NASH patients and mouse models for NASH.

Arianne van Koppen² Reinout Stoop² Roeland Hanemaaijer² Martien Caspers¹ Martine Morrison² Kanita Salic² Anita van den Hoek² **Robert Kleemann²** Lars Verschuren^{1#}

¹ TNO Microbiology and Systems Biology ² TNO Metabolic Health Research

Lars.Verschuren@tno.nl

Methods

We analyzed the time-resolved molecular responses in two different diet-induced mouse models of NAFLD/NASH/fibrosis (High Fat Diet (HFD)-fed LDLr-/-.Leiden mice and High Fat and Cholesterol (HFC)-fed ApoE3Leiden*CETP mice). Human gene expression dataset was used as published by Ahrens M, 2013 and originates from Gene Expression Omnibus (GSE48452). Differentially expressed genes as compared to their study-controls were used as input for comparison between mice and men. Analysis was performed on single gene and pathway level using bioinformatics tools.

STZ18

29

15

62

44

MCD

ACD8

HF 30

Pten

0

WTD

9

species

NAFLD

NASH

HF12

HF18

STZ12

STZ18

MCD4

MCD8

Pten

HF30

WTD

HO

These data demonstrate that 71 genes with distinct expression pattern (green is downregulated, red is upregulated) in human NASH biopsies have significant overlap with expression in both mouse models.

Comparison of top-18 significant pathways after enrichment analysis of differently expressed genes in both human NASH and mouse models

These data demonstrate overlap between human and mouse models in the biological processes LXR-activation, inflammation and hepatic stellate cell activation.

Table 1. the dataset GSE48452 was used recently (Teufel et al, 2016) and demonstrate very little overlap of genes in human NASH as compared to mouse models.

8

17

NASH

3

18

3

뽀

26

22

38

21

뿌

Conclusions:

regulated

genes

(mapped)

12 (10

65 (51)

177 (123)

149 (126)

35 (28)

55 (35)

71 (57)

703 (573)

1098 (909

91 (75)

236 (206)

125 (108)

species

НΟ

NAFLD

NASH

HF12

HF18

STZ12

STZ18

MCD4

MCD8

Pten

HF30

WTD

오

9

0

0

4

ΑF

Analysis of individual genes demonstrate that a large part of the human regulated genes are represented in two diet-induced mouse models. The 29 significantly differentially expressed canonical pathways for human NASH and their significance in mouse

Pathway Analysis (IPA)	Significant in Mouse = Red: 66% of Significant Human Pathways	
The 29 Significant Human Canonical Pathways	ApoE3 Leiden *	LDLr-/- Leiden
(-logp>2)	CETP	
Hepatic Fibrosis / Hepatic Stellate Cell Activation		
LXR/RXR Activation		
Fcy Receptor-mediated Phagocytosis in Macropha		
Coagulation System		
PI3K Signaling in B Lymphocytes		
Acute Phase Response Signaling		
FXR/RXR Activation		
Superpathway of Cholesterol Biosynthesis		
Extrinsic Prothrombin Activation Pathway		
Dendritic Cell Maturation		
Caveolar-mediated Endocytosis Signaling		
Intrinsic Prothrombin Activation Pathway		
Cholesterol Biosynthesis I		
Cholesterol Biosynthesis II (via 24,25-dihydrolanos		
Cholesterol Biosynthesis III (via Desmosterol)		
Zymosterol Biosynthesis		
mTOR Signaling		
Histidine Degradation III		
Superpathway of Methionine Degradation		
Superpathway of Inositol Phosphate Compounds		
Histidine Degradation VI		
Complement System		
Oleate Biosynthesis II (Animals)		
Fatty Acid Biosynthesis Initiation II		
Palmitate Biosynthesis I (Animals)		
Epoxysqualene Biosynthesis		
β-alanine Degradation I		
Cell Cycle Control of Chromosomal Replication		
EIF2 Signaling		

ApoE3Leiden*CETP: HFC vs. chow

- **Enrichment analysis of biological processes** demonstrate overlap between mouse and men in processes related to LXR-activation, inflammation and hepatic stellate cell activation.
- 66% of the canonical pathways in human are represented in the mouse models. Among them lipid metabolism, inflammation and hepatic fibrosis.

66% of the human pathways also show significant differential expression in the mouse models (ApoE3Leiden*CETP and LDLr-/-.Leiden). Among them are the most important NASH related biological processes: lipid metabolism, inflammation and hepatic stellate cell activation (see figure on the right).

